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Quantum Field Theory

® A field has a value at every point 1n spacetime

® Particles are local excitations of these fields

® ’'lo define a quantum field theory, we must specity the fields and
how they interact

® Llilectrons and positrons interact by exchanging photons, for example



String T'heory

Gravity as a QFT Gravity from String Theory
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These are infinite These are finite

These are four dimensional These are ten dimensional

['To prove the consistency of string theory we
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use the remarkable fact that Z n— —— |
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Sigma model on the string worldsheet gives general relativity



String T'heory
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® String theory 1s in fact a web of interconnected theories in ten (or
eleven or twelve) dimensions

® How do we proceed?



'1'he Forces of Nature

® (Gravitational interactions described by Einstein

1 87TGN
Guv == Ry — §gWR + Aguw = A L

Newton, Philosophie Naturalis Principia Mathematica (1687)
Einstein, “On the General Theory of Relativity” (1915)

o Llectromagnetism

Maxwell, Treatise on Electricity and Magnetism (1873)

e Weak force
Fermi (1933), Abdus-Salam, Glashow, Weinberg (1968)

e Mass mechanism
Brout, Englert; Higgs; Guralnik, Hagen, Kibble (1964

® Strong force (quantum chromodynamics)
Yukawa (1935), Gell-Mann, Zweig (1961), Gross, Wilczek, Politzer (1973)



'1'he Forces of Nature

® (Gravitational interactions described by Einstein
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'1'he Forces of Nature

® (Gravitational interactions described by Einstein

1 87TGN
Guv == Ry — §gWR + Aguw = A L

® Non-gravitational interactions are not encoded as geometry

Theorem [Coleman—Mandula]: symmetry group in 4 dimensions 1s Poincaré x internal



'1'he Forces of Nature

Gravitational interactions described by Einstein

1 87TGN
Guv = Ry — §gWR + Mg = A L

Non-gravitational interactions are not encoded as geometry

Theorem [Coleman—Mandula]: symmetry group in 4 dimensions 1s Poincaré x internal

Clever loophole: internal symmetries may arise from higher dimensional
geometry

Kaluza—Klein: 5d Einstein equations give 4d Einstein + Maxwell equations



Geometric Engineering

Higher dimensional objects in string theory (branes) on which QFTs live

'lTen dimensional theory 1s consistent

Ansatz for the geometry is Mg = RS x CY3

Properties of Calabi—Yau determine physics in four dimensions

Example: N, = —|x| in simplest heterotic compactification models
P g 2 P P

Candelas, Horowitz, Strominger, Witten (1985)
Greene, Kirklin, Miron, Ross (1986)




Geometric Engineering

Higher dimensional objects 1n string theory (branes)

'lTen dimensional theory 1s consistent

Ansatz for the geometry is Mg = MS x CY3
dSy

Properties of Calabi—Yau determine physics in four dimensions

Example: N, = —|x| in simplest heterotic compactification models
P g 2 P P

Candelas, Horowitz, Strominger, Witten (1985)
Greene, Kirklin, Miron, Ross (1986)




'1he Real World

String theory supplies a framework for quantum gravity

We are beginning to understand black holes and holography

String theory 1s also an organizing principle for mathematics

Finding our universe among the myriad of possible consistent realizations of
a four dimensional low-energy limit of string theory 1s the vacuum
selection problem

Most vacua are false 1n that they do not resemble Nature at all

Among the landscape of possibilities, we do not have even one solution that
reproduces all the particle physics and cosmology we know



'1'’he Unreal World

® 'T'he objective 1s to obtain the real world from a string compactification

® We would happily settle for a modestly unreal world

N =1 supersymmetry in 4 dimensions

G=SU3)exSU2)L, xU(1)y

Matter 1n chiral representations of G :

(37 2)%7 (§7 1)—§7 (gv 1)%7 (17 2)::%7 (17 1)17 (17 1)0

Superpotential W O \Y gbaqﬂb‘%

Three copies of matter such that A"/ not identical

Consistent with cosmology




'1'’he Unreal World

® 'T'he objective 1s to obtain the real world from a string compactification

® We would happily settle for a modestly unreal world

N =1 supersymmetry in 4 dimensions

QIA) ~ A £ 5)

No experimental evidence so far! myg < mpj



'1'’he Unreal World

® 'T'he objective 1s to obtain the real world from a string compactification

® We would happily settle for a modestly unreal world

N =1 supersymmetry in 4 dimensions

Because 1t 1s Ricci flat, the
Calabi—Yau geometry ensures
4d supersymmetry

Use topological and geometric
features of the Galabi—Yau to
recover aspects of the real world




Calabi—Yau

Mee (2013)
w* +zt oyt 42t =0C P



T'here 1s a now!

Calabi—Yau

Mee (2012)
w4+ 0P 42y 22 =0cC P

here vanishing holomorphic 7-form

he canonical |

bundle 1s trivial

There is a Kahler metric with global holonomy in SU (n)



Outline

Introduction and motivation

Patterns in distribution of Hodge numbers of toric Calabi—Yau threetolds

Machine learning complete intersection Galabi—Yau threetfolds (G1CYs)
— Hodge numbers
— Favorability

— Dascrete symmetries

Summary and prospects



'lToric Varieties

Consider: ‘21‘2 + |22|2 + ‘23‘2 =1cCC’

Identity (21, Z9, 23) ~ 6i¢(21, 29, 23) to define ]PQ C (CS
Define (7,9, 2) = (|21]%, |22]?, |23]?)

The original geometryis T+ Y+ 2=1or z2=1—2—y
This is a triangle 3

Use U (1) to choose the phase of 23

The phases of 27 , Z9 define an algebraic torus over the base

Open dense subset; action of torus on 1itself extends over the variety



From Polytopes to Geometries

® lormally, a reflexive polytope is defined as follows:

The (possibly singular) toric variety A, is specified by an integer polytope A in R™*!,
which is a collection of vertices (dimension 0) each of which is an (n 4 1)-vector with
integer entries, such that each pair of neighboring vertices defines an edge (dimension 1),
each pair of edges defines a face (dimension 2), etc., all the way up to a facet (dimension
n). The polytope is then the convex body in R™™! enclosed by these facets. We will
always include the origin as being contained in A. Using the usual dot product ( , )
inherited from R™*!, the dual polytope is defined by

A° = {v e R""'[(m,v) > -1,V me A} .

The polytope A is reflexive if all the vertices of A° are integer vectors.

® [rom this, we compute the Calabi—Yau hypersurface:

We define the Calabi—Yau hypersurface X,, explicitly as the polynomial equation

k
Z Crr H:Cim,vﬂ-i-l =0,

meA r=1

where v, are the vertices of A° with k being the number of vertices of A° (or
equivalently the number of facets of A), x, are the coordinates of A,.;, and c¢,, are
numerical coefficients parameterizing the complex structure of X,,.



Reflexive Polytopes

® Starting from a reflexive polytope, one can build a toric Galabi—Yau via
methods of Batyrev, Borisov

convex hull of finitely many lattice points

/ there 15 a single interior lattice point



Reflexive Polytopes Catalogued

® Starting from a reflexive polytope, one can build a toric Calabi—Yau via

methods of Batyrev, Borisov

® Kreuzer—Skarke obtained 473,300,776 reflexive polytopes that yield toric
Calabi—Yau threetolds with 30,108 unique pairs of Hodge numbers
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® Distribution of polytopes exhibits
MIrror symmetry



Reflexive Polytopes Catalogued

® Starting from a reflexive polytope, one can build a toric Calabi—Yau via
methods of Batyrev, Borisov

® Kreuzer—Skarke obtained 473,300,776 reflexive polytopes that yield toric
Calabi—Yau threetolds with 30,108 unique pairs of Hodge numbers

® Distribution of polytopes exhibits
MIrror symmetry

"N ,q ) H 1
ﬂu‘nqw' 1) mt iy .*N"',."‘

® 'T'he peak of the distribution 1s at

(N (h'h h1?) = (27,27)

There are 910,113 such polytopes

® Are there patterns in how the
> Ll L2 topological invariants are distributed?




3d Plots of Polytope Data
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Patterns in CY Distributions
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e 0Odd points
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Patterns in CY Distributions

_____ 800000 - ®--F-.

600000}

400000} :

Frequency

200000 -+

Pseudo-Voigt distribution

sum of Gaussian and Gauchy

(1-a)

A _ (z—p)? A [ O'2 ]
o\ 2T 7 (zz:—,u)2—|—02

Planck distribution

A 1
xn eb/(z—c) _ 1
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Collaborators

Yang-Hu1 He Luca Pontiggia
arXiv:1512.01579



From Polytopes to Geometries

0-simplex l-simplex 2-simplex 3-simplex

e A triangulation of P is a partition into simplices such that:

the union of all simplices is P

the intersection of any pair 1s a (possibly empty) common face

® lrom triangulation, we construct the Stanley—Reisner ring

® Unique rings correspond to different Galabi—Yau geometries

® lor each, we have topological data, intersection form, Kahler cone
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Example: S°

M

d

a

G

d

In = (ad, bce)

KA — K[a,b,c,d,e]/[A

b

minimal non-faces

Stanley—Reisner ring

Homeomorphic to two-sphere




From Polytopes to Geometries

Every triangulation of a reflexive polytope can yield a Galabi—Yau

We do not know how many toric Galabi—Yau geometries there are

Ditterent triangulations of the same polytope are expected, 1n general, to
orve different Galabi—Yau manifolds

In principle, triangulations of different polytopes can give the same Calabi—
Yau manifold

The Calabi—Yau inherits topological invariants from the polytope

16 polytopes 1n R? orve rise to elliptic curves (Galabi—Yau onetfolds)
4319 polytopes in R? otve rise to K3 (Calabi—Yau twofolds)

473800776 polytopes 1in R* orve rise to at least 30108 Calabi—Yau threetolds



A Calabi—Yau Database

© ©® i 1a11218.pdf X | & Toric CY Database Vishnu
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! Apps Y Bookmarks M Gmail [ Searches & Images [[dBing £ News [ Science [ arxiv [ hep-th [ hep-me INSPIRE INSPIRE-ME ¥ Maps
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Toric Calabi-Yau Database

This database is based on arXiv:1411.1418. Please cite us.
Constructed with support from the National Science Foundation under grant NSF/CCF-1048082, EAGER: CiC: A String Cartography.

R 1. H——

Enter search parameters:

Select Polytope Properties: Select CY Geometry Properties:

Select Triangulation-Specific Properties:

Format: Integers

—

Format: Integers

n: [

v2:: [

Euler #: [ N

Favorable?: ||| R
Fundamental Group: [ N

Format: Integers

—
Geometry # (within polytope): _
Triangulation # (within geometry): _

Triangulation # (within polytope): [
Format: Integers

# of Geometries (within polytope): [
# of Triangulations (within geometry): _
# of Triangulations (within polytope): [ | |

Format: Integers

# of Newton Polytope Vertices: _
# of Newton Polytope Points: _
# of Dual Polytope Vertices: _

# of Dual Polytope Points: [

Format: {{...}.{...},.-..,{.-}}

(Mathematica matrix)

Resolved) Weight Matrix: [ | NN

Newton Polytope Vertex Matrix: || N

Dual Polytope (Resolved) Vertex Matrix: || | NN
CY 2nd Chern Numbers: _

Intersection Polynomial or Tensor: _

u Polytope ID # ® Geometry # (within polytope)

m Polytope # m # of Triangulations (within geometry)
mHI11 & CY 2nd Chern Class (Basis)

m H21 ® CY 2nd Chern Numbers

m Euler # m CY Intersection Polynomial (Basis)
m Favorable? m CY Intersection Tensor (Basis)

m # of Newton Polytope Vertices ® CY Mori Cone Matrix
m # of Newton Polytope Points m CY Kahler Cone Matrix
® Newton Polytope Vertex Matrix m Toric Swiss Cheese Solutions
m # of Dual Polytope Vertices
m # of Dual Polytope Points

® Dual Polytope Vertex Matrix

m Explicit Swiss Cheese Solutions

® Dual Polytope Resolved Vertex Matrix

m Weight Matrix

® Resolved Weight Matrix

m Toric to Basis Divisor Transformation Matrix
® Basis from Toric Divisors

m Basis to Toric Divisor Transformation Matrix
m Toric from Basis Divisors

® Fundamental Group

m # of Geometries (within polytope)

m # of Triangulations (within polytope)

® Triangulation # (within g y)

® Triangulation # (within polytope)

® Triangulation

® Stanley-Reisner Ideal

® Ambient Chern Classes (Toric)

® Ambient Chern Classes (Basis)

@ CY 2nd Chem Class (Toric)

® CY 3rd Chem Class (Toric)

® CY 3rd Chern Class (Basis)

B Ambient Intersection Polynomial (Toric)
B Ambient Intersection Tensor (Toric)

B Ambient Intersection Polynomial (Basis)
B Ambient Intersection Tensor (Basis)

m CY Intersection Polynomial (Toric)

m CY Intersection Tensor (Toric)

® Phase Mori Cone Matrix

® Phase Kahler Cone Matrix

Polytopes s

(0 = Unconstrained)

o vty D) I v |

https://rossealtman.com

James Gray
Yang-Hui He




lTorus

Flat, but has non-trivial homotopy

‘There are non-contractible cycles

N

|
a— CYCle" v y=Imz
_ R
T = R e
7 A=R;Rysinf

Kahler parameter: area A size

1 X

xr = Rez

complex structure parameter: T shape

ds* = Ridz? + Ridy® + 2R, R; cos Odz dy



M()duli ()f CYS

® (Geometrical moduli enumerated by number of embedded two-spheres and

three-spheres
h??9 = dim HP1

1 bo
— di k_ P,q
0 0 b b =dim H* = » " h
0 hl,l 0 b p+q=k
1 ht:? h?:1 1 b3 ht4 = P (complex conjugation)
2,2
0 h Y b4 hP4 = p*~P"~9  (Poincaré duality)
0 0 bs
1 be Y = Z(_l)p+th,q
p,q
b
I 53 — 1 complex structure moduli, counts the number of three-cycles

ht! =b, Kihler moduli, counts the number of two-cycles and four-cycles
1
x = 2(h*' — hY?) Euler characteristic, N, = §lx|

® Mirror symmetry says that we can rotate the Hodge diamond by /2
and get a new Calabi—Yau with p'! « pb2



CICYs

® /ero locus of a set of homogeneous polynomials over combined set of
coordinates of projective spaces

P qi e q}{ Z n,— K =23 complete intersection
. threefold
X =
| g qy quzn,,+1, Vrefl,...,m]
configuration matrix ’ cpr =0

o [ equations of multi-degree q, € L~ embeddedin P x ... x P"m

e Example: quintic P*(5) 4—-1=3

® Other examples: P5(3,3) : IP)5(4, 2) , P6(3,2,2) : P7(2,2,2,2)



CICYs

e Tian—Yau manifold: P2 3 0 1
P3 0 3 1

has X = —18

freely acting /,3 quotient gives manifold with X = —0

central to early string phenomenology

® ’Transpose 1s Schon’s manifold, also Calabi—Yau

® (Can compute X from configuration matrix



CICYs

® lor threetolds, we have constraints on size of configuration matrix

KSNl_I_Na_I_Sv N1§97 Na§6

AN

. number of other projective space factors
number of [P~s

® We have: 7890 configuration matrices g?}?i?fﬁigieiggﬂﬁg’ &;glg??@ggfk“
1 x1 to 12 x 15 with ¢, € [0, 5]
266 distinct Hodge pairs (h*h, hY?) = (1,65), ..., (19, 19)
0<hbt <19, 0<hrb? <101
70 distinct Euler characters X € [—200, 0]

195 have freely acting symmetries, 37 different finite groups
from ZQ to ZS X H8 Braun (2010)



CICY Hodge Numbers

CICY3 Hodge Numbers
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CICY Hodge Numbers

~960 ~720 —480 —240 0 240 480 720 960
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Candelas (2012)



Feedtorward Neural Networks

Input vector

L1
w1
To Wo o(wir1 + woxs + w3xs + b)
w3
s Neuron
1 21 2 12
(YY ]
(YY)
° °
° °
P ° °
°
°

Schematic representation of feedforward neural network. The top figure denotes the perceptron (a single neuron),
the bottom, the multiple neurons and multiple layers of the neural network.



Support Vector Machines

Linear Kernel, linearly separable data Gaussian Kernel, non-linearly separable data
1.0

0.8
0.6
0.4
0.2
0.0
-0.2
-0.4

-0.6

SVM separation boundary calculated using our cvxopt implementation with a randomly generated data set.



Genetic Algorithms

Create new population by
o _ Evaluate score for each
Generate inital populatlon Se|ecti0n’ breeding and
entry in population

mutation

Used to fix hyperparameters (¢.g, number of hidden layers and neurons in them, activation functions, learning
rates and dropout) in neural network.



Machine Learning h”

: 1,1 1,2 . . :
Since we know X = 2(h "~ —h” ) from 1ntersection matrix, we choose to
machine learn A" € [0, 19]

Previous efforts discriminated large and small htt

Use Neural Network classifier/regressor and SVM regressor

Hodge Number - Validation Learning Curves

0.9 -
0.8 -
> 0.7 -
o
>
O
9
<
0.6 -
0.5 A e
¢ SVM Regressor Validation Accuracy
¢ Neural Net Regressor, Validation Accuracy
Neural Net Classifier, Validation Accuracy
0.4 -

0.2 0.4 0.6 0.8 _
Fraction of data used for training Bull, He, V], Mishra (2018)



Machine Learning h”

Accuracy RMS R? WLB WUB
SVM Reg 0.70 4 0.02 0.53+ 0.06 0.78 £ 0.08 0.642 0.697
NN Reg 0.78 £ 0.02 046 £0.05 0.724+0.06 0.742 0.791
NN Class | 0.88 £+ 0.02 - - 0.847 0.886
1/2 pred\2
1 N pred 2 . Zz (y'l yz )
RMS := —Z — ;)? R :=1-— 5
NS 2.i(Yi — 9)

==
Wilson upper/lower bounds
(WUB/WLB)
Yi
Y
pred
2z
n

2

1+ 2

n

1/2
p"‘ an: % p(l_p)—l— ZQ /
n 4n?

actual value

average value

predicted value

probability of successful prediction
probit

number of samples

Bull, He, V], Mishra (2018)



NN classifier

NN regressor

SVM regressor

Machine Learning h”

Frequency
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h11 frequency of validation set (20.0% of full dataset)
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80%
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Bull, He, V], Mishra (2018)



Favorability

A CICY 1s favorable it its second cohomology class descends from that of
the ambient space A = P"* x ... x P"m

ie., hb! = Number of P"s

4874 out of 7980 CICY configuration matrices are favorable
this 1s 61%

Favorable CICYs amenable to construction of stable vector bundles and
monad bundles 1n string model building

Use Neural Network and SVM to test whether manifolds are favorable

T'his 1s a binary test



Accuracy

Favorability

Is CICY3 Favourable - Learning Curve

VR iy
0.95 -
0.90
0.85 -
- ¢ SVM Validation Accuracy
0.80 - / SVM Training Accuracy
¢ Neural Net Validation Accuracy
¢ Neural Net Training Accuracy
ofz 0?4 Oi6 0r8
Fraction of data used for training
Accuracy WLB WUB
SVM Class | 0.933 + 0.013 0.867  0.893
NN Class 0.905 + 0.017 0.886 0.911

Accurate and very fast!

Bull, He, V], Mishra (2018)



Discrete Symmetries

Does a CICY enjoy a freely acting discrete symmetry?
Usetul for introducing Wilson lines to break GU'I" to Standard Model

195 of the CICYs have freely acting symmetries; 31 distinct groups, largest
of order 32; 1695 CICY quotients possible

2.5% of the total dataset



Rare Results

So far, we have used accuracy of results to benchmark success

Suppose we are searching for a rare property within a dataset; perhaps it 1s
there ~ 0.1% of the time

A program that reports NO all the time 1s 99.9% accurate

It 15 also completely useless!
For needle in a haystack problems, accuracy 1s not a suitable benchmark

Use SMOTE to increase rare entries by synthetically creating new ones

(For our problem this turns out not to help a whole lot)



Better Metrics of Success

® Define confusion matrix

Actual

True False

Predicted True True Positive (tp) False Positive (fp)

Classification | False | False Negative (fn) | True Negative (tn)

® Irom this, we construct

t
TPR := — FPR :— —7
tp+ fn fp+tn
tp 4+ tn . tp
Accuracy := Precision :=
tp+tn+ fp+ fn tp+ fp
. 2
® Then F-valueis F:= —— — € [0,1]

TPR ' Precision

® Area Under R(eceiver) O(perating) C(haracteristic) Gurve [AUC] plots TPR
against FPR; this 1s between 0.5 and 1



True Positive Rate

ROC Curve

Typical ROC Curves

1.0 -
a8
0.8 A
0.6 A
0.4 1
0.2 1
—— Good ROC curve, AUC=0.988640871922493
0.0 - No better than random guess, AUC=0.5
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate




ROC Curve & F-values

ROC, NN Classifier, Trained with 80% of data ROC, SVM Classifier, Trained with 80% of data
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ROC Curve & F-values

SMOTE | SVM AUC | SVM max F NN AUC NN max F
0 0.77 = 0.03 | 0.26 = 0.03 | 0.60 = 0.05 | 0.10 = 0.03
100 0.75 = 0.03 | 0.24 = 0.02 | 0.59 = 0.04 | 0.10 &= 0.05
200 0.74 = 0.03 | 0.24 =0.03 | 0.71 = 0.05 | 0.22 = 0.03
300 0.73 £0.04 | 0.23 =0.03 | 0.80 = 0.03 | 0.25 = 0.03
400 0.73 =£0.03 | 0.23 = 0.03 | 0.80 = 0.03 | 0.26 = 0.03
500 0.72 £ 0.04 | 0.23 = 0.03 | 0.81 = 0.03 | 0.26 &= 0.03

SMOTE 100 doubles the minority class, SMOTE 200 triples the minority class, etc.
SMOTE doesn’t help SVM, helps Neural Network somewhat

Shortlist 447 out of 1584 for further study; 417 of these are false positives; missed
a quarter of manifolds with symmetries

Identifying geometries with discrete symmetries 1s a challenging problem

Bull, He, V], Mishra (2018)
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Calabi—Yau T'hreefolds




Summary

We have found new patterns in distribution of Hodge numbers in Kreuzer—
Skarke dataset of reflexive polytopes

We have applied machine learning to identity features of GICY threefolds

In particular, we predict Hodge numbers with neural networks and support
vector machines

We test favorability as a property of GICY geometries

We interrogate whether geometries have discrete symmetries

Quick diagnostic tools for shortlisting geometries



The Good

The Bad

The Possibly
Beautiful

Quo Vadis?

During the last 10-15 years, several international collaborations
have computed geometrical and physical quantities and compiled
them 1n vast databases that partially describe the string landscape

Computations are hard, especially for a comprehensive treatment:
dual cone algorithm (exponential), triangulation (exponential),
Grobner basis (double exponential), how to construct stable bundles
over Calabi—Yau manifolds constructed from halt a billion polytopes?

Borrow techniques from “Big Data”



Prospectus

Apply these 1deas to study Kreuzer—Skarke dataset of reflexive polytopes
and toric Galabi—Yau geometries constructed therefrom

Extend analysis to GICY and toric fourfolds for F-theory model building
Machine learn the Standard Model 1n string constructions

Swiss cheese geometries for cosmological model building

How does the black box learn semantics without syntax?

Algebraic geometry and 1ts intersection with physics 1s a wondertul
landscape to explore with this new paradigm



Thank you!



